Wearable-ome meets epigenome: A novel approach to measuring biological age with wearable devices

Author:

Sugden CameronORCID,du Preez Franco BORCID,Olivier Laurence R,Deffur ArminORCID

Abstract

AbstractAging is an inevitable process of cellular and physiological decline. These markers of age can be measured on the molecular and functional level. Wearable devices offer a non-invasive continuous measure of physiological and behavioural features and how they pertain to aging. Wearable data can be used to extrapolate information derived from epigenetic biological age predictions and its underlying biology. LifeQ-enabled wearable devices were worn for 40 days to harvest data on 48 human participants. Thereafter blood was drawn and methylation levels determined using the Illumina EPIC array. Multiple epigenetic clock ages were calculated and compared with wearable features. Activity minutes correlated with VO2max (p = 0.003), subendocardial viability ratio (SEVR, p < 0.01), blood pressure index (BPI, p = 0.02), resting heart rate (RHR, p < 0.01) and heart outflow (HO, p < 0.01). Sedentary time correlated with RHR (p < 0.01), VO2max (p = 0.01), SEVR (p = 0.04), and HO (p = 0.04). VO2max, SEVR, small artery resistance (SAR), BPI and large artery stiffness index (LASI) correlated with multiple epigenetic age clock outputs and chronological age but were most strongly correlated with PCPhenoAge. VO2max, (p = 0.04) RHR (p < 0.01) and LASI (p = 0.04) were significantly correlated with PCPhenoAge acceleration. Weighted gene correlation network analysis (WGCNA) of the differentially methylated positions of PCPhenoAge acceleration was used to construct modules, identifying 3 modules correlating with wearable features. Behavioural features impact physiological state, measured by the wearable, which are associated with epigenetic age and age acceleration. Signal from the underlying biology of age acceleration can be picked up by the wearable, presenting a case that wearable devices can capture portions of biological aging.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3