Resting State Brain Connectivity analysis from EEG and FNIRS signals

Author:

Blanco Rosmary,Koba Cemal,Crimi Alessandro

Abstract

AbstractContemporary neuroscience is highly focused on the synergistic use of machine learning and network analysis. Indeed, network neuroscience analysis intensively capitalizes on clustering metrics and statistical tools. In this context, the integrated analysis of functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) provides complementary information about the electrical and hemodynamic activity of the brain. Evidence supports the mechanism of the neurovascular coupling mediates brain processing. However, it is not well understood how the specific patterns of neuronal activity are represented by these techniques. Here we have investigated the topological properties of functional networks of the resting-state brain between synchronous EEG and fNIRS connectomes, across frequency bands, using source space analysis, and through graph theoretical approaches. We observed that at global-level analysis small-world topology network features for both modalities. The edge-wise analysis pointed out increased inter-hemispheric connectivity for oxy-hemoglobin compared to EEG, with no differences across the frequency bands. Our results show that graph features extracted from fNIRS can reflect both shortand longrange organization of neural activity, and that is able to characterize the large-scale network in the resting state. Further development of integrated analyses of the two modalities is required to fully benefit from the added value of each modality. However, the present study highlights that multimodal source space analysis approaches can be adopted to study brain functioning in healthy resting states, thus serving as a foundation for future work during tasks and in pathology, with the possibility of obtaining novel comprehensive biomarkers for neurological diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3