Decoding humanin vitroterminal erythropoiesis originating from umbilical cord blood mononuclear cells and pluripotent stem cells

Author:

Wang XiaolingORCID,Zhang WeiORCID,Zhao Siqi,Yan Hao,Xin Zijuan,Cui Tiantian,Zang Ruge,Zhao Lingping,Wang Haiyang,Zhou Junnian,Li Xuan,Yue Wen,Xi Jiafei,Zhang Zhaojun,Fang Xiangdong,Pei Xuetao

Abstract

SUMMARYEx vivo RBC production generates unsatisfactory expansion, β-globin expression, and maturation of erythroid cells. The underlying mechanisms behind these limitations and ex vivo terminal erythropoiesis from different origins are largely unexplained. In this study, we mapped an atlas of ex vivo terminally differentiated cells from umbilical cord blood mononuclear cells (UCBMNs) and pluripotent stem cells (PSCs), and observed the differential regulatory dynamics of erythropoiesis from these two origins at a single-cell resolution. We detected the presence of hematopoietic stem progenitor cells (HSPCs), erythroid progenitor (e.g., CFU-E), and non-erythroid cells (e.g., macrophages) in the terminal populations. We observed that UCBMN-derived erythropoiesis is more active than PSC-derived erythropoiesis in terms of the cell cycle, stress erythropoiesis, and autophagy at single cell resolution, which may provide new insights into the limitations in cell expansion, globin expression, and maturation in ex vivo RBC production, respectively. We verified that a stress-erythropoiesis-related gene,TRIB3, increases the expression of globin genes in ex vivo erythropoiesis. As the major unexpected component detected in terminally differentiated cells, CFU-E were further characterized as having high- or low- expansion capacity based on CD99 expression, which generally decreased over erythropoiesis. By inhibiting CD99 gene expression using antagonists, we increased reticulocyte production in the population. Heterogeneous CFU-Es also exist in bone marrow. Moreover, decreased CD99 expression mediates the interactions between macrophages and CFU-E during ex vivo erythropoiesis. Overall, our results provide a reference for facilitating the development of strategies to improve ex vivo RBC regeneration.HighlightsWe performed scRNA-seq and cell typing of late stage UCBMN- and PSC-derived cellsStress erythropoiesis, autophagy and cell cycle related gene expression different in two originsCD99highprogenitor cells are a proliferating colony forming unit erythroid subpopulation

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3