ESCRT disruption provides evidence against signaling functions for synaptic exosomes

Author:

Dresselhaus Erica C.,Harris Kathryn P.,Koles Kate,Pescosolido Matthew F.,Ermanoska Biljana,Rozencwaig Mark,Soslowsky Rebecca C.,Stewart Bryan A.,Rodal Avital A.ORCID

Abstract

Exosomes are membrane-bound vesicles released by many cells including neurons, carrying cargoes involved in signaling and disease. It has been unclear whether exosomes promote intercellular signalingin vivoor serve primarily to dispose of unwanted cargo. This is because manipulations of exosome cargo expression or traffic often result in their depletion from the donor cell, making it difficult to distinguish whether these cargoes act cell-autonomously or through transcellular transfer. Exosomes arise when multivesicular endosomes fuse with the plasma membrane, releasing their intralumenal vesicles outside the cell. We show that loss of multivesicular endosome-generating ESCRT (endosomal sorting complex required for transport) machinery disrupts release of exosome cargoes fromDrosophilamotor neurons, without depleting them from the donor presynaptic terminal. Cargoes and autophagic vacuoles accumulate in presynaptic terminals, suggesting that compensatory autophagy follows endosome dysfunction. Surprisingly, exosome cargoes Synaptotagmin-4 (Syt4) and Evenness Interrupted (Evi) retain many of their signaling activities upon ESCRT depletion, despite being trapped in presynaptic terminals. Thus, these cargoes may not require intercellular transfer, and instead are likely to function cell autonomously in the motor neuron. Our results indicate that synaptic exosome release depends on ESCRT, and serves primarily as a proteostatic mechanism for at least some cargoes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3