Transformation of sensory organ identity by ectopic expression of Cut in Drosophila.

Author:

Blochlinger K,Jan L Y,Jan Y N

Abstract

The loss of cut activity results in a change in neural identity in the peripheral nervous system so that the neurons and support cells of external sensory (es) organs are transformed into those of internal chordotonal (ch) organs, cut encodes a large nuclear homeo domain protein (Cut) that is expressed in the differentiated cells of es organs and their precursors but not in the cells of ch organs. We now analyze the effects of ectopic Cut expression in transformant lines of flies containing the Cut-coding sequences under inducible regulatory control. We demonstrate that ubiquitous Cut expression in embryos results specifically in the morphologic and antigenic transformation of ch organs into es organs. This effect appears to involve positive autoregulation of Cut expression. We conclude that Cut is not only necessary but sufficient for the specification of es organ identify in sensory organ precursor cells and their progeny. The specificity of Cut function to sensory organ cells involves the proneural loci daughterless and the achaete-scute complex.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3