Characterization of cDNAs encoding the polypyrimidine tract-binding protein.

Author:

Gil A,Sharp P A,Jamison S F,Garcia-Blanco M A

Abstract

The polypyrimidine tract of mammalian introns is recognized by a 62-kD protein (pPTB). Mutations in the polypyrimidine tract that reduce the binding of pPTB also reduce the efficiency of formation of the pre-spliceosome complex containing U2 snRNP. The PTB protein was purified to homogeneity by affinity chromatography on a matrix containing poly(U), and peptide sequence was used to isolate several cDNAs. Because a variety of cell types express mRNA complementary to these cDNAs, PTB may be a ubiquitous splicing factor. Three classes of cDNAs were identified, on the basis of the presence of additional sequences at an internal position. This variation in sequence probably reflects alternative splicing of the PTB pre-mRNA and produces mRNAs encoding the prototype PTB protein, a form of PTB protein containing 19 additional residues, and a truncated form of PTB protein with a novel carboxyl terminus. A murine homolog of pPTB has been characterized previously as a DNA-binding protein. Sequence comparisons indicate that pPTB is distantly related to the hnRNP L protein and that these two proteins should be considered as members of a novel family of RNA-binding proteins.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3