Gαi2 inhibition of adenylate cyclase regulates presynaptic activity and unmasks cGMP-dependent long-term depression at Schaffer collateral-CA1 hippocampal synapses

Author:

Bailey Christopher P.,Nicholls Russell E.,Zhang Xiao-lei,Zhou Zhen-yu,Müller Wolfgang,Kandel Eric R.,Stanton Patric K.

Abstract

Cyclic AMP signaling plays a central role in regulating activity at a number of synapses in the brain. We showed previously that pairing activation of receptors that inhibit adenylate cyclase (AC) and reduce the concentration of cyclic AMP, with elevation of the concentration of cyclic GMP is sufficient to elicit a presynaptically expressed form of LTD at Schaffer collateral-CA1 synapses in the hippocampus. To directly test the role of AC inhibition and G-protein signaling in LTD at these synapses, we utilized transgenic mice that express a mutant, constitutively active inhibitory G protein, Gαi2, in principal neurons of the forebrain. Transgene expression of Gαi2 markedly enhanced LTD and impaired late-phase LTP at Schaffer collateral synapses, with no associated differences in input/output relations, paired-pulse facilitation, or NMDA receptor-gated conductances. When paired with application of a type V phosphodiesterase inhibitor to elevate the concentration of intracellular cyclic GMP, constitutively active Gαi2 expression converted the transient depression normally caused by this treatment to an LTD that persisted after the drug was washed out. Moreover, this effect could be mimicked in control slices by pairing type V phosphodiesterase inhibitor application with application of a PKA inhibitor. Electrophysiological recordings of spontaneous excitatory postsynaptic currents and two-photon visualization of vesicular release using FM1-43 revealed that constitutively active Gαi2 tonically reduced basal release probability from the rapidly recycling vesicle pool of Schaffer collateral terminals. Our findings support the hypothesis that inhibitory G-protein signaling acts presynaptically to regulate release, and, when paired with elevations in the concentration of cyclic GMP, converts a transient cyclic GMP-induced depression into a long-lasting decrease in release.

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3