Quantum Approximated Graph Cutting: A Rapid Replacement for T-REMD?

Author:

Sandeep SamarthORCID,Aramyan Sona,Poghosyan Armen H.,Gupta Vaibhav

Abstract

AbstractDetermining an optimal protein configuration for the employment of protein binding analysis as completed by Temperature based Replica Exchange Molecular Dynamics (T-REMD) is an important process in the accurate depiction of a protein’s behavior in different solvent environments, especially when determining a protein’s top binding sites for use in protein-ligand and protein-protein docking studies. However, the completion of this analysis, which pushes out top binding sites through configurational changes, is an polynomial-state computational problem that can take multiple hours to compute, even on the fastest supercomputers. In this study, we aim to determine if graph cutting provide approximated solutions the MaxCut problem can be used as a method to provide similar results to T-REMD in the determination of top binding sites of Surfactant Protein A (SP-A) for binding analysis. Additionally, we utilize a quantum-hybrid algorithm within Iff Technology’s Polar+ package using an actual quantum processor unit (QPU), an implementation of Polar+ using an emulated QPU, or Quantum Abstract Machine (QAM), on a large scale classical computing device, and an implementation of a classical MaxCut algorithm on a supercomputer in order to determine the types of advantages that can be gained through using a quantum computing device for this problem, or even using quantum algorithms on a classical device. This study found that Polar+ provides a dramatic speedup over a classical implementation of a MaxCut approximation algorithm or the use of GROMACS T-REMD, and produces viable results, in both its QPU and QAM implementations. However, the lack of direct configurational changes carried out onto the structure of SP-A after the use of graph cutting methods produces different final binding results than those produced by GROMACS T-REMD. Thus, further work needs to be completed into translating quantum-based probabilities into configurational changes based on a variety of noise conditions to better determine the accuracy advantage that quantum algorithms and quantum devices can provide in the near future.

Publisher

Cold Spring Harbor Laboratory

Reference40 articles.

1. Cvx graph algorithms. https://pypi.org/project/cvxgraphalgs/. Accessed: 2020 – 12 – 01.

2. Pyspark. https://spark.apache.org/docs/latest/api/python/index.html. Accessed: 2020 – 12 – 01.

3. Qaoa documentation. https://grove-docs.readthedocs.io/en/latest/qaoa.html. Accessed: 2020 – 12 – 01.

4. S. Aaronson . Bqp and the polynomial hierarchy. In Proceedings of the forty-second ACM symposium on Theory of computing, pages 141–150, 2010.

5. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3