Functional Transcriptome Analysis of Bladder Cancer Cell Lines Persistently Infected with Oncolytic Newcastle Disease Virus

Author:

Ahmad UmarORCID,Thirumorthy ArcanaORCID,Chau De MingORCID,Chia Suet LinORCID,Yusoff KhatijahORCID,Abdullah SyahrilORCID,Chan Soon ChoyORCID,Veerakumarasivam AbhiORCID

Abstract

AbstractBackgroundNewcastle disease virus (NDV) has been an attractive virotherapy agent that targets various type of human cancers while leaving normal cells unharmed. Wild-type NDV strain AF2240 has been found to persistently infect subpopulation of cancer cells in vitro, making the cells less susceptible to NDV-mediated oncolysis. It is proposed that transcriptome profiling of NDV persistently infected bladder cancer cell lines will provide insights to understand such occurrence by identifying specific pathways associated with NDV persistent infection due to transcriptomic dysregulation.ResultsTranscriptome profiling revealed a total of 63 and 134 differentially expressed genes (DEGs) from NDV persistently infected TCCSUPPi and EJ28Pi bladder cancer cells relative to their uninfected controls, respectively. Of the 63 DEGs identified for TCCSUPPi cells, 25 DEGs were upregulated (log2 fold-change ≥ 0) and 38 DEGs were downregulated (log2 fold-change ≤ 0). These genes were significantly enriched in the molecular function of calcium binding (GO:0005509) and DNA-binding transcription repressor activity, RNA polymerase II-specific (GO:0001227) and the enriched important upregulated pathways were mainly heme metabolism, TGF-beta signaling and spermatogenesis. As for EJ28Pi, 55 DEGs were upregulated (log2 fold-change ≥ 0) and 79 DEGs were downregulated (log2 fold-change ≤ 0). These DEGs resulted in significantly enriched molecular function such as protein domain specific binding (GO:0019904) and RNA polymerase II regulatory region sequence-specific DNA binding (GO:0000977). The enriched important upregulated pathways were allograft rejection, KRAS signaling up and interferon gamma response. Other important pathways that were downregulated in both the NDV-persistently infected cell lines were angiogenesis, apoptosis, and xenobiotic metabolism.ConclusionThe transcriptome profiles (RNA-Seq) of these cell lines suggest that evasion of apoptosis and increase in TGF-beta signaling and interferon gamma response activities are crucial for establishment of NDV persistent infection in bladder cancer cells. Findings from this study provide the molecular basis that warrant further study on how bladder cancer cells acquired NDV persistent infection. Resolving the mechanism of persistent infection will facilitate the application of NDV for more effective treatment of bladder cancer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3