31P NMR Spectroscopy Demonstrates Large Amounts of Phosphohistidine in Mammalian Cells

Author:

Makwana Mehul V.,van Meurs Sandra,Hounslow Andrea M.,Williamson Mike P.ORCID,Jackson Richard F. W.ORCID,Muimo RichmondORCID

Abstract

AbstractProtein phosphorylation plays a key role in many cellular processes but there is presently no accurate information or reliable procedure to determine the relative abundance of many phosphoamino acids in cells. At pH ≤ 8, phosphohistidine is unstable compared to the extensively studied phosphoserine, phosphothreonine and phosphotyrosine. This study reports the absolute quantitative analysis of histidine phosphorylation of proteins from a human bronchial epithelial cell (16HBE14o-) lysate using31P NMR spectroscopic analysis. The method was designed to minimize loss of the phosphohistidine phosphoryl group. Phosphohistidine was determined on average to be approximately one third as abundant as phosphoserine and phosphothreonine combined (and thus roughly 20 times more abundant than phosphotyrosine). The amount of phosphohistidine, and phosphoserine/phosphothreonine per gram of protein from a cell lysate was determined to be 23 μmol/g and 68 μmol/g respectively. The amount of phosphohistidine, and phosphoserine/phosphothreonine per cell was determined to be 1.8 fmol/cell, and 5.8 fmol/cell respectively. After tryptic digest of proteins from the16HBE14o- cell lysate, the phosphohistidine signal was abolished and increasing phosphoserine/phosphothreonine signal was observed, which has implications for mass spectrometry investigations. The31P NMR spectroscopic analysis not only highlights the abundance of phosphohistidine, which likely reflects its importance in mammalian cells, but also provides a way of measuring and comparing levels of phosphorylated amino acids in cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3