Landscape, complexity and regulation of a filamentous fungal transcriptome

Author:

Lu Ping,Chen Daipeng,Qi Zhaomei,Wang Haoming,Chen Yitong,Wang Qinhu,Jiang Cong,Liu Huiquan,Xu Jin-Rong

Abstract

ABSTRACTAlternative splicing (AS) and alternative polyadenylation (APA) of pre-mRNAs contribute greatly to transcriptome complexity and gene expression regulation in higher eukaryotes. Their biological impact in filamentous fungi, however, has been poorly studied. Here we combine PacBio Isoform Sequencing and strand-specific RNA-Seq of multiple tissues together with mutant characterization to reveal the landscape, complexity and regulation of AS and APA in the filamentous plant pathogenic fungus Fusarium graminearum. We updated the reference genome and generated a comprehensive annotation comprising 51,617 transcript isoforms from 17,189 genes. Majority of the transcripts represent novel isoforms, including 2,998 undiscovered protein-coding genes. In total, 42.7% of multi-exonic genes and 64.8% of genes have AS and APA isoforms, respectively, suggesting AS and APA increase previously unrecognized transcriptome complexity in fungi. Nonsense-mediated mRNA decay factor FgUPF1 may not degrade AS transcripts with premature-stop codons but regulate ribosome biogenesis. Distal polyadenylation sites have a strong signal but proximal polyadenylation isoforms are high expressed. The core 3’-end processing factors FgRNA15, FgHRP1, and FgFIP1 play important roles in promoting proximal polyadenylation site usage and also intron splicing. Genome-wide increase in the abundance of transcripts with retained introns and long 3’-UTRs and downregulation of the spliceosomal and 3’-end processing factors are found in older tissues and quiescent conidia, indicating that intron retention and 3’-UTR lengthening may be a transcriptional signature of aging and dormancy in fungi. Overall, our study generates a comprehensive full-length transcript annotation for F. graminearum and provides new insights into the complexity and regulation of transcriptome in filamentous fungi.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3