Population-level asymmetry of the cerebral cortex: reproducibility, lifespan changes, heritability, and individual differences

Author:

Roe James M.ORCID,Vidal-Piñeiro DidacORCID,Amlien Inge K.ORCID,Pan MengyuORCID,Sneve Markus H.ORCID,de Schotten Michel ThiebautORCID,Friedrich PatrickORCID,Sha ZhiqiangORCID,Francks ClydeORCID,Wang YunpengORCID,Walhovd Kristine B.ORCID,Fjell Anders M.ORCID,Westerhausen RenéORCID

Abstract

AbstractCortical asymmetry is a ubiquitous feature of brain organization that is altered in neurodevelopmental disorders and aging. Achieving consensus on cortical asymmetries in humans is necessary to uncover the genetic-developmental mechanisms that shape them and factors moderating cortical lateralization. Here, we delineate population-level asymmetry in cortical thickness and surface area vertex-wise in 7 datasets and chart asymmetry trajectories across life (4-89 years; observations = 3937; 70% longitudinal). We reveal asymmetry interrelationships, heritability, and test associations in UK Biobank (N=~37,500). Cortical asymmetry was robust across datasets. Whereas areal asymmetry is predominantly stable across life, thickness asymmetry grows in development and declines in aging. Areal asymmetry correlates in specific regions, whereas thickness asymmetry is globally interrelated across cortex and suggests high directional variability in global thickness lateralization. Areal asymmetry is moderately heritable (max h2SNP ~19%), and phenotypic correlations are reflected by high genetic correlations, whereas heritability of thickness asymmetry is low. Finally, we detected an asymmetry association with cognition and confirm recently-reported handedness links. Results suggest areal asymmetry is developmentally stable and arises in early life, whereas developmental changes in thickness asymmetry may lead to directional variability of global thickness lateralization. Our results bear enough reproducibility to serve as a standard for future brain asymmetry studies.SignificanceCortical asymmetry is reduced in neurodevelopmental disorders, yet we lack knowledge of how cortical asymmetry development proceeds across life in health. We provide a definitive reference for asymmetry in the cerebral cortex. We find areal asymmetry is stable from childhood to old age, and specific areal asymmetries are formed under common genetic-developmental influence. In contrast, thickness asymmetry shows developmental growth, and is globally interrelated in a pattern suggesting highly left-lateralized individuals tend towards left-lateralization also in right-asymmetric regions (and vice versa). Heritability mapping also supported a prenatal-postnatal developmental dichotomy for areal and thickness asymmetry, and we find reduced asymmetry in the most lateralized brain region associates with reduced cognition. Our results provide novel insights into normal brain organization and development.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3