Progressive lifespan modifications in the corpus callosum following a single juvenile concussion in male mice monitored by diffusion MRI

Author:

Obenaus AndreORCID,Noarbe Brenda P.,Lee Jeong Bin,Panchenko Polina E.,Noarbe Sean D.,Lee Yu Chiao,Badaut Jerome

Abstract

AbstractIntroductionThe sensitivity of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, particularly in preclinical rodent models, there is lacking a comprehensive longitudinal study spanning the lifespan of the mouse. We previously reported early modifications to WM using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi. For the first time, we assess corpus callosum (CC) integrity across the lifespan after a single juvenile concussion utilizing diffusion MRI (dMRI).MethodsC57Bl/6 mice were exposed to sham or two severities of closed-head concussion (Grade 1, G1, speed 2 m/sec, depth 1mm; Grade 2, G2, 3m/sec, 3mm) using an electromagnetic impactor at postnatal day 17.In vivodiffusion tensor imaging was conducted at 1, 3, 6, 12 and 18 mpi (21 directions, b=2000 mm2/sec) and processed for dMRI parametric maps: fractional anisotropy (FA), axial (AxD), radial (RD) and mean diffusivity (MD). Whole CC and regional CC data were extracted. To identify the biological basis of altered dMRI metrics, astrocyte and microglia in the CC were characterized at 1 and 12 mpi by immunohistochemistry.ResultsWhole CC analysis revealed altered FA and RD trajectories following juvenile concussion. Shams exhibited a temporally linear increase in FA with age while G1/G2 mice had plateaued FA values. G2 concussed mice exhibited high variance of dMRI metrics at 12mpi, which was attributed to the heterogeneity of TBI on the anterior CC. Regional analysis of dMRI metrics at the impact site unveiled significant differences between G2 and sham mice. The dMRI findings appear to be driven, in part, by loss of astrocyte process lengths and increased circularity and decreased cell span ratios in microglia.ConclusionFor the first time, we demonstrate progressive perturbations to WM of male mice after a single juvenile concussion across the mouse lifespan. The CC alterations were dependent on concussion severity with elevated sensitivity in the anterior CC that was related to astrocyte and microglial morphology. Our findings suggest that long-term monitoring of children with juvenile concussive episodes using dMRI is warranted, focusing on vulnerable WM tracts.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3