Non-invasive homogeneous targeted blood-brain barrier disruption using acoustic holography with a clinical focused ultrasound system

Author:

McDannold NathanORCID,Zhang Yongzhi,Fletcher Stecia-MarieORCID,Livingstone Margaret

Abstract

AbstractHolographic methods can be used with phased array transducers to shape an ultrasound field. We tested a simple method to create holograms with a 1024-element phased array transducer. With this method, individual acoustic simulations for each element of the transducer were simultaneously loaded into computer memory. Each element’s phase was systematically modulated until the combined field matched a desired pattern. The method was evaluated with a 220 kHz hemispherical transducer being tested clinically to enhance drug delivery via blood-brain barrier disruption. The holograms were evaluated in a tissue-mimicking phantom andin vivoin experiments disrupting the blood-brain barrier in rats and in a macaque. This approach can enlarge the focal volume in a patient-specific manner and could reduce the number of sonication targets needed to disrupt large volumes, improve the homogeneity of the disruption, and improve our ability to detect microbubble activity in tissues with low vascular density.TeaserHolography can shape the focal region of a clinical focused ultrasound system developed for targeted drug delivery in the brain.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3