Dynamic protein assembly and architecture of the large solitary membraneless organelle during germline development in the waspNasonia vitripennis

Author:

Kharel Kabita,Tindell Samuel J.,Kemph Allie,Schmidtke Ryan,Alexander Emma,Lynch Jeremy A.ORCID,Arkov Alexey L.ORCID

Abstract

AbstractGerm cells in different animals assemble characteristic membraneless organelles referred to as germ granules, which contain RNA and proteins required for germline development. Typically, the germ granules are small spherical or amorphous cytoplasmic granules and often, they assemble around membrane-bound organelles such as nuclei, mitochondria and endoplasmic reticulum. In particular, in egg chambers of the fruit flyDrosophila, nurse cells assemble perinuclear granules, referred to as nuage, along with multiple small germ granules formed at the posterior pole of the oocyte (polar granules). Nuage is assembled in a very similar way in the waspNasonia vitripennis, despite the long evolutionary distance fromDrosophila.In contrast,Nasoniaforms a very different single germ granule, called the oosome, at the posterior, which is about 40 times larger than a homologousDrosophilapolar granule. Here, using molecular and super-resolution imaging approaches, we provide insights into protein assembly and architecture of the oosome during germline development. Interestingly, unlike the fly, the wasp utilizes alternatively spliced RNA-helicase Vasa isoforms during germline development and oosome formation. The isoforms differ by an unstructured region, containing repeats of phenylalanine and glycine, that is similar to functional domains characteristic of nucleoporins. In addition, while other conserved components of germ granules, such as Oskar, Aubergine and Tudor proteins are recruited to the oosome, these polypeptides show a distinct and specific localization within the oosome. Of particular note, Tudor protein forms a shell encapsulating the oosome, while small Oskar/Vasa/Aubergine granules occur inside the oosome core. Also, in surprising contrast toDrosophilaegg chambers, we found that a subset of the wasp nurse cells located in anterior show dramatic DNA damage and assemble higher levels of nuage than their posterior counterparts. The characteristics of two distinct nurse cell populations suggest a mechanistic link between the higher amounts of nuage assembled in anterior nurse cells and their need to silence transposable elements in the presence of double-strand DNA breaks. Our results point to the high degree of plasticity in the assembly of membraneless organelles, which adapt to specific developmental needs of different organisms, and suggest that novel molecular features of conserved proteins result in the unique architecture of the oosome in the wasp.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3