gNOMO2: a comprehensive and modular pipeline for integrated multi-omics analyses of microbiomes

Author:

Arıkan MuzafferORCID,Muth ThiloORCID

Abstract

AbstractBackgroundOver the past few years, the rise of omics technologies has offered an exceptional chance to gain a deeper insight into the structural and functional characteristics of microbial communities. As a result, there is a growing demand for user friendly, reproducible, and versatile bioinformatic tools that can effectively harness multi-omics data to offer a holistic understanding of microbiomes. Previously, we introduced gNOMO, a bioinformatic pipeline specifically tailored to analyze microbiome multi-omics data in an integrative manner. In response to the evolving demands within the microbiome field and the growing necessity for integrated multi-omics data analysis, we have implemented substantial enhancements to the gNOMO pipeline.ResultsHere, we present gNOMO2, a comprehensive and modular pipeline that can seamlessly manage various omics combinations, ranging from two to four distinct omics data types including 16S rRNA gene amplicon sequencing, metagenomics, metatranscriptomics, and metaproteomics. Furthermore, gNOMO2 features a specialized module for processing 16S rRNA gene amplicon sequencing data to create a protein database suitable for metaproteomics investigations. Moreover, it incorporates new differential abundance, integration and visualization approaches, all aimed at providing a more comprehensive toolkit and insightful analysis of microbiomes. The functionality of these new features is showcased through the use of four microbiome multi-omics datasets encompassing various ecosystems and omics combinations. gNOMO2 not only replicated most of the primary findings from these studies but also offered further valuable perspectives.ConclusionsgNOMO2 enables the thorough integration of taxonomic and functional analyses in microbiome multi-omics data, opening up avenues for novel insights in the field of both host associated and free-living microbiome research. gNOMO2 is available freely athttps://github.com/muzafferarikan/gNOMO2.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3