Carotenoid composition and sequestration in cassava (Manihot esculentumCrantz) roots

Author:

Drapal MargitORCID,Ovalle Rivera Tatiana M.ORCID,Becerra Lopez-Lavalle Luis AugustoORCID,Fraser Paul D.ORCID

Abstract

AbstractCassava (Manihot esculentum Crantz) is a staple food source for many developing countries. Its edible roots are high in starch but lack micronutrients such as β-carotene. In the present study, analysis of pedigree breeding populations has led to the identification of cassava accessions with enhanced β-carotene contents up to 40 μg/g DW. This represents 0.2% of the Recommended Daily Allowance (RDA) for vitamin A. The β-branch of the carotenoid pathway predominates in cassava roots, with dominant levels of β-carotene followed by other minor epoxides of β-ring derived carotenoids. Metabolomic analysis revealed that steady state levels of intermediary metabolism were not altered by the formation of carotenoids, similar to starch and carbohydrate levels. Apocarotenoids appeared to be independent of their carotenoid precursors. Lipidomic analysis provided evidence of a significant positive correlation between carotenoid and lipid content, in particular plastid specific galactolipids. Proteomic analysis of isolated amyloplasts revealed an abundance of carbohydrate/starch biosynthetic associated proteins (e.g. glucose-1-phosphate adenylyltransferase). No carotenoid related proteins were detected even in the highest carotenoid containing lines. Carotenoids were associated with fractions typically annotated as plastoglobuli and plastid membranes (particularly the envelope). Proteomic analysis confirmed these structures apart from plastoglobuli, thus potentially amyloplast structures may not contain classical plastoglobuli structures.HighlightCassava genotypes with enhanced provitamin A content (β-carotene) reveals interconnectivity between the carotenoid pathway, starch and lipid biosynthesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3