Mechanism of action of Buqing Granule against Diabetic retinopathy based on network pharmacology and animal experiments

Author:

Yang Yifan,Yuan Ling,Li Xiangyang,Liu Qian,Jiang Wenjie,Jiao Taiqiang,Li Jiaqing,Ye Mengyi,Niu Yang,Nan Yi

Abstract

ABSTRACTObjectiveFor this study, network pharmacology and animal experiments were used together to get a better idea of how BQKL works at the molecular level to treat DR.MethodsIn this study, we obtained the relevant action target information of BQKL from the TCMSP and also combined the GeneCards, OMIM, TTD, and PharmGKB databases with the GEO database to obtain the relevant target information of DR. The intersection of these targets was determined using a Venn diagram to identify the target of action for the treatment of DR with BQKL. The target proteins of BQKL for DR were then uploaded to the String database. The resultant data were imported into Cytoscape 3.9.0 to construct PPI networks and identify key targets of action. The DAVID database was used to do a GO and KEGG pathway enrichment analysis of target genes for treating DR with BQKL. Molecular docking was performed to validate the core action targets with the core compounds of BQKL. In addition, we induced DR production in rats by a high-fat, high-sugar diet and intraperitoneal injection of STZ and validated the results obtained from the network pharmacological analysis by changes in body weight and blood glucose, serum levels of biochemical markers, HE staining, immunohistochemistry, qRT-PCR, and Western blot experiments in rats.ResultsIn this study, quercetin, kaempferol, β-sitosterol, lignanserin, and stigmasterol were identified as the key components, TP53, AKT1, JUN, CASPASE3, MAPK3, and MAPK1 as the key targets, and PI3K-Akt, AGE-RAGE, and MAPK signaling pathways as the main pathways involved. The results of animal experiments showed that BQKL could not only effectively reduce the degree of blood glucose, blood lipids, and oxidative damage in diabetic rats but also slow down the development process of DR. At the same time, it can significantly up-regulate the expression of AKT1, MAPK1, and MAPK3 and down-regulate the expression of CASPASE3, c-JUN, and TP53 in retinal tissue.ConclusionBQKL ameliorates oxidative stress, apoptosis, and inflammation due to hyperglycemia-related stress by regulating key targets of CASPASE3, AKT1, c-JUN, TP53, MAPK1, and MAPK3, thereby delaying the onset and progression of DR.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. Progress of Nanotechnology in Diabetic Retinopathy Treatment;International journal of nanomedicine,2021

2. Wong TY , Cheung CM , Larsen M , Sharma S , Simó R . Diabetic retinopathy. Nature reviews Disease primers. 2016; 2: 16012.

3. Wang W , Lo ACY . Diabetic Retinopathy: Pathophysiology and Treatments. International journal of molecular sciences. 2018; 19(6).

4. Cao H. Overseas Returned Chinese Medicine Ancient Books Collection. 12, Yangshi Jiacang Fang. Chinese Ancient Books Publishing Co; 2005.

5. Clinical observation on 35 cases of immature age-related cataract treated with Buqing soup;Journal of Ningxia Medical University,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3