RluA is the major mRNA pseudouridine synthase inEscherichia coli

Author:

Schaening-Burgos CassandraORCID,Li Gene-WeiORCID,Gilbert WendyORCID

Abstract

AbstractPseudouridine (Ψ) is an ubiquitous RNA modification, present in the tRNAs and rRNAs of species across all domains of life. Conserved pseudouridine synthases modify the mRNAs of diverse eukaryotes, but the modification has yet to be identified in bacterial mRNAs. Here, we report the discovery of pseudouridines in mRNA fromE. coli. By testing the mRNA modification capacity of all 11 known pseudouridine synthases, we identify RluA as the predominant mRNA-modifying enzyme. RluA, a known tRNA and 23S rRNA pseudouridine synthase, modifies at least 31 of the 44 high-confidence sites we identified inE. colimRNAs. Using RNA structure probing data to inform secondary structures, we show that the target sites of RluA occur in a common sequence and structural motif comprised of a ΨURAA sequence located in the loop of a short hairpin. This recognition element is shared with previously identified target sites of RluA in tRNAs and rRNA. Overall, our work identifies pseudouridine in key mRNAs and suggests the capacity of Ψ to regulate the transcripts that contain it.Author SummaryWhile RNAs are initially transcribed using only the nucleotides A, G, C and U, these can be enzymatically modified into many different post-transcriptional modifications. tRNAs and rRNAs across all domains of life are modified with pseudouridine, an isoform of uridine that is inserted by highly conserved enzymes. In many eukaryotes, it has been demonstrated that some of these enzymes can also insert pseudouridines in mRNA, where they are poised to impact gene expression through their effects on the transcript. Here we show that protein-coding transcripts inE. coliare also modified with pseudouridine, indicating that mRNA pseudouridylation is also a highly conserved activity. RluA is the main mRNA pseudouridine synthase, introducing the modification into the transcripts of dozens of protein coding genes with high specificity. Its target sites are defined by a combined sequence and secondary structure motif. Two additional enzymes, RluC and RluD, introduce a few additional sites. All three of these enzymes belong to the same sub-family of pseudouridine synthases, and homologs of these also modify mRNAs in humans. Thus, mRNA modification by these enzymes might be a conserved activity with the capacity to impact gene regulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3