A common druggable signature of oncogenic CMYC, mutant KRAS and mutant p53 reveals functional redundancy and competition of the oncogenes in cancer

Author:

Grześ Maria,Jaiswar Akanksha,Grochowski Marcin,Wojtyś Weronika,Kaźmierczak Wojciech,Olesiński Tomasz,Lenarcik Małgorzata,Nowak-Niezgoda Magdalena,Kołos Małgorzata,Canarutto Giulia,Piazza Silvano,Wiśniewski Jacek R.,Walerych DawidORCID

Abstract

AbstractMajor driver oncogenesCMYC, mutantKRAS and mutantTP53often co-exist and cooperate in promoting human neoplasia. By CRISPR-Cas9-mediated downregulation we determined their proteomics and transcriptomics downstream programs in a panel of cell lines with activated either single or three oncogenes – in cancers of lung, colon and pancreas. This allowed to define and screen the oncogenes’ common functional program for anti-cancer target candidates, and find protocols which efficiently kill cancer cells and organoids by targeting pathways represented by a signature of three genes:RUVBL1, HSPA9andXPO1. We found that these genes were controlled by the driver oncoproteins in a redundant or competitive manner, rather than by cooperation. Each oncoprotein individually was able to upregulate the three target genes, while upon oncogene co-expression each target was controlled preferably by a specific oncoprotein which reduced the influence of the others. Mechanistically this redundancy was mediated by parallel routes of the target gene activation – as in the case of mutant KRAS signaling to C-JUN and GLI-2 transcription factors bypassing CMYC, and by competition – as in the case of mutant p53 and CMYC competing for biding to the target promoters. The transcriptomics data from the cell lines and patient samples indicate that the redundancy of the oncogenic programs is a broad phenomenon which may comprise even a majority of the genes dependent on the oncoprotein, as shown for mutant p53 in colon and lung cancer cell lines. Nevertheless, we demonstrate that the redundant oncogene programs harbor targets of efficient anti-cancer drug combinations, bypassing limitations of a direct oncoprotein inhibition.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3