Trigeminal nerve direct current stimulation causes sustained increase in neural activity in the rat hippocampus

Author:

Chen Liyi,Deng Zhengdao,Asamoah Boateng,Laughlin Myles Mc

Abstract

AbstractTranscranial direct current stimulation (tDCS) is a noninvasive neuromodulation method that can modulate many brain functions including learning and memory. Recent evidence suggests that tDCS memory effects may be caused by co-stimulation of scalp nerves such as the trigeminal nerve (TN), and not the electric field in the brain. The TN gives input to brainstem nuclei, including the locus coeruleus that controls noradrenaline release across brain regions, including hippocampus. However, the effects of TN direct current stimulation (TN-DCS) are currently not well understood. In this study we hypothesized that TN-DCS manipulates hippocampal activity via an LC-noradrenergic bottom-up pathway. We recorded neural activity in rat hippocampus using multichannel silicon probes. We applied 3 minutes of 0.25 mA or 1 mA TN-DCS, monitored hippocampal activity for up to 1 hour and calculated spikes-rate and spike-field coherence metrics. Subcutaneous injections of xylocaine were used to block TN and intraperitoneal injection of clonidine to block the LC pathway. We found that 1 mA TN-DCS caused a significant increase in hippocampal spike-rate lasting 45 minutes in addition to significant changes in spike-field coherence, while 0.25 mA TN-DCS did not. TN blockage prevented spike-rate increases, confirming effects were not caused by the electric field in the brain. When 1 mA TN-DCS was delivered during clonidine blockage no increase in spike-rate was observed, suggesting an important role for the LC-noradrenergic pathway. These results provide a neural basis to support a tDCS TN co-stimulation mechanism. TN-DCS emerges as an important tool to potentially modulate learning and memory.HighlightsTrigeminal nerve direct current stimulation (TN-DCS) boosts hippocampal spike ratesTN-DCS alters spike-field coherence in theta and gamma bands across the hippocampus.Blockade experiments indicate that TN-DCS modulated hippocampal activity via the LC-noradrenergic pathway.TN-DCS emerges as a potential tool for memory manipulation.Figure Graphic Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3