Efficient inverse graphics in biological face processing

Author:

Yildirim Ilker,Belledonne Mario,Freiwald Winrich,Tenenbaum Joshua

Abstract

Vision must not only recognize and localize objects, but perform richer inferences about the underlying causes in the world that give rise to sensory data. How the brain performs these inferences remains unknown: Theoretical proposals based on inverting generative models (or “analysis-by-synthesis”) have a long history but their mechanistic implementations have typically been too slow to support online perception, and their mapping to neural circuits is unclear. Here we present a neurally plausible model for efficiently inverting generative models of images and test it as an account of one high-level visual capacity, the perception of faces. The model is based on a deep neural network that learns to invert a three-dimensional (3D) face graphics program in a single fast feedforward pass. It explains both human behavioral data and multiple levels of neural processing in non-human primates, as well as a classic illusion, the “hollow face” effect. The model fits qualitatively better than state-of-the-art computer vision models, and suggests an interpretable reverse-engineering account of how images are transformed into percepts in the ventral stream.

Publisher

Cold Spring Harbor Laboratory

Reference99 articles.

1. Olshausen, B. A. Perception as an inference problem. In Gazzaniga, M. & Mangun, R. (eds.) The Cognitive Neurosciences (MIT Press, 2013).

2. Vision as Bayesian inference: analysis by synthesis?

3. Barrow, H. & Tenenbaum, J. Recovering intrinsic scene characteristics from images. Computer Vision Systems 2 (1978).

4. Visual long-term memory has a massive storage capacity for object details

5. Hierarchical Bayesian inference in the visual cortex

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3