Patient-specific iPSCs carrying anSFTPCmutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease

Author:

Alysandratos Konstantinos-DionysiosORCID,Russo Scott J.,Petcherski AntonORCID,Taddeo Evan P.,Acín-Pérez Rebeca,Villacorta-Martin Carlos,Jean J. C.,Mulugeta Surafel,Blum Benjamin C.,Hekman Ryan M.,Vedaie Marall,Kook Seunghyi,Wambach Jennifer A.ORCID,Cole F. SessionsORCID,Hamvas AaronORCID,Emili Andrew,Guttentag Susan H.ORCID,Shirihai Orian S.ORCID,Beers Michael F.ORCID,Kotton Darrell N.ORCID

Abstract

SummaryThe incompletely understood pathogenesis of pulmonary fibrosis (PF) and lack of reliable preclinical disease models have limited development of effective therapies. An emerging literature now implicates alveolar epithelial type 2 cell (AEC2) dysfunction as an initiating pathogenic event in the onset of a variety of PF syndromes, including adult idiopathic pulmonary fibrosis (IPF) and childhood interstitial lung disease (chILD). However, inability to access primary AEC2s from patients, particularly at early disease stages, has impeded identification of disease-initiating mechanisms. Here we present anin vitroreductionist model system that permits investigation of epithelial-intrinsic events that lead to AEC2 dysfunction over time using patient-derived cells that carry a disease-associated variant,SFTPCI73T, known to be expressed solely in AEC2s. After generating patient-specific induced pluripotent stem cells (iPSCs) and engineering their gene-edited (corrected) counterparts, we employ directed differentiation to produce pure populations of syngeneic corrected and mutant AEC2s, which we expand >1015foldin vitro, providing a renewable source of cells for modeling disease onset. We find that mutant iPSC-derived AEC2s (iAEC2s) accumulate large amounts of misprocessed pro-SFTPC protein which mistrafficks to the plasma membrane, similar to changes observedin vivoin the donor patient’s AEC2s. These changes result in marked reduction in AEC2 progenitor capacity and several downstream perturbations in AEC2 proteostatic and bioenergetic programs, including a late block in autophagic flux, accumulation of dysfunctional mitochondria with consequent time-dependent metabolic reprograming from oxidative phosphorylation to glycolysis, and activation of an NF-κB dependent inflammatory response. Treatment ofSFTPCI73Texpressing iAEC2s with hydroxychloroquine, a medication commonly prescribed to these patients, results in aggravation of autophagy perturbations and metabolic reprogramming. Thus, iAEC2s provide a patientspecific preclinical platform for modeling the intrinsic epithelial dysfunction associated with the inception of interstitial lung disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3