Gene editing ofSAMHD1in macrophage-like cells reveals complex relationships between SAMHD1 phospho-regulation, HIV-1 restriction and cellular dNTP levels

Author:

Schüssler Moritz,Schott Kerstin,Fuchs Nina Verena,Oo Adrian,Zahadi Morssal,Rauch Paula,Kim Baek,König RenateORCID

Abstract

AbstractSterile α motif (SAM) and HD domain-containing protein 1 (SAMHD1) is a dNTP triphosphate triphosphohydrolase (dNTPase) and a potent restriction factor for immunodeficiency virus 1 (HIV-1), active in myeloid and resting CD4+T cells. The anti-viral activity of SAMHD1 is regulated by dephosphorylation of the residue T592. However, the impact of T592 phosphorylation on dNTPase activity is still under debate. Whether additional cellular functions of SAMHD1 impact anti-viral restriction is not completely understood.We report BLaER1 cells as a novel human macrophage HIV-1 infection model combined with CRISPR/Cas9 knock-in (KI) introducing specific mutations into theSAMHD1locus to study mutations in a physiological context. Transdifferentiated BLaER1 cells harbor active dephosphorylated SAMHD1 that blocks HIV-1 reporter virus infection. As expected, homozygous T592E mutation, but not T592A, relieved a block to HIV-1 reverse transcription. Co-delivery of VLP-Vpx to SAMHD1 T592E KI mutant cells did not further enhance HIV-1 infection indicating the absence of an additional SAMHD1-mediated antiviral activity independent of T592 de-phosphorylation. T592E KI cells retained dNTP levels similar to WT cells indicating uncoupling of anti-viral and dNTPase activity of SAMHD1. The integrity of the catalytic site in SAMHD1 was critical for anti-viral activity, yet poor correlation of HIV-1 restriction and global cellular dNTP levels was observed in cells harboring catalytic core mutations. Together, we emphasize the complexity of the relationship between HIV-1 restriction, SAMHD1 enzymatic function and T592 phospho-regulation and provide novel tools for investigation in an endogenous and physiological context.ImportanceWe introduce BLaER1 cells as an alternative myeloid cell model in combination with CRISPR/Cas9-mediated gene editing to study the influence of SAMHD1 T592 Mophosphorylation on anti-viral restriction and the control of cellular dNTP levels in an endogenous, physiological relevant context. Proper understanding of the mechanism of the anti-viral function of SAMHD1 will provide attractive strategies aiming at selectively manipulating SAMHD1 without affecting other cellular functions.Even more, our toolkit may inspire further genetic analysis and investigation of restriction factors inhibiting retroviruses, their cellular function and regulation, leading to a deeper understanding of intrinsic anti-viral immunity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3