High-accuracy mapping of human and viral direct physical protein-protein interactions using the novel computational system AlphaFold-pairs

Author:

Poitras Christian,Lamontagne Felix,Grandvaux Nathalie,Song Hao,Pinard Maxime,Coulombe BenoitORCID

Abstract

AbstractProtein-protein interactions are central, highly flexible components of regulatory mechanisms in all living cells. Over the years, diverse methods have been developed to map protein-protein interactions. These methods have revealed the organization of protein complexes and networks in numerous cells and conditions. However, these methods are also time consuming, costly and sensitive to various experimental artifacts. To avoid these caveats, we have taken advantage of the AlphaFold-Multimer software, which succeeded in predicting the structure of many protein complexes. We designed a relatively simple algorithm based on assessing the physical proximity of a test protein with other AlphaFold structures. Using this method, named AlphaFold-pairs, we have successfully defined the probability of a protein-protein interaction forming. AlphaFold-pairs was validated using well-defined protein-protein interactions found in the literature and specialized databases. All pairwise interactions forming within the 12-subunit transcription machinery RNA Polymerase II, according to available structures, have been identified. Out of 66 possible interactions (excluding homodimers), 19 specific interactions have been found, and an additional previously unknown interaction has been unveiled. The SARS-CoV-2 surface glycoprotein Spike (or S) was confirmed to interact with high preference with the human ACE2 receptor when compared to other human receptors. Notably, two additional receptors, INSR and FLT4, were found to interact with S. For the first time, we have successfully identified protein-protein interactions that are likely to form within the reassortant Eurasian avian-like (EA) H1N1 swine G4 genotype Influenza A virus, which poses a potential zoonotic threat. Testing G4 proteins against human transcription factors and molecular chaperones (a total of 100 proteins) revealed strong specific interactions between the G4 HA and HSP90B1, the G4 NS and the PAQosome subunit RPAP3, as well as the G4 PA and the POLR2A subunit. We predict that AlphaFold-pairs will revolutionize the study of protein-protein interactions in a large number of healthy and diseased systems in the years to come.

Publisher

Cold Spring Harbor Laboratory

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3