Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single cell resolution

Author:

Caporale Nicolò,Castaldi Davide,Rigoli Marco Tullio,Cheroni Cristina,Trattaro Sebastiano,Valenti Alessia,Bonfanti Matteo,Stucchi Sarah,Tobon Alejandro Lopez,Ricca Dario,Lessi Manuel,Pezzali Martina,Vitriolo Alessandro,Schmid Katharina T.,Heinig MatthiasORCID,Theis Fabian J.,Villa Carlo Emanuele,Testa Giuseppe

Abstract

AbstractThe combination of brain organoid and single cell omic technologies holds transformative potential to dissect human neurobiology at high resolution and with mechanistic precision. Delivering this promise in the context of human neurodiversity, physiological and pathological alike, requires however a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we implemented and benchmarked complementary strategies to multiplex brain organoids. Following an extended longitudinal design with a uniquely informative set of timepoints, we pooled cells from different induced pluripotent stem cell lines either during organoids generation (upstream multiplexing in mosaic models) or before single cell-RNAseq library preparation (downstream multiplexing). We developed a new method, SCanSNP, and an aggregated call to deconvolve organoids cell identities, overcoming current criticalities in doublets prediction and low quality cells identification and improving accuracy over state of the art algorithms. Integrating single cell transcriptomes and analysing cell types across neurodevelopmental stages and multiplexing modalities, we validated the feasibility of both multiplexing methods in charting neurodevelopmental trajectories at high resolution, linking their specificity to genetic variation between individual lines. Together, this multiplexing suite of experimental and computational methods provides an enabling resource for disease modelling at scale and paves the way towards anin vitroepidemiology paradigm.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3