Recombinant SARS-CoV-2 lacking initiating and internal methionine codons within ORF10 is attenuatedin vivo

Author:

Gu Shichun,Bentley Eleanor G,Milligan Rachel I,Almuqrin Abdulaziz M.,Sharma Parul,Kirby Adam,Mega Daniele F,Kipar Anja,Erdmann Max,Bazire James,Heesom Kate J.,Lewis Philip A,Donovan-Banfield I’ah,Reston Charlotte,Webb Isobel,Neck Simon De,Dong Xaiofeng,Hiscox Julian A,Davidson Andrew D,Stewart James P,Matthews David A.ORCID

Abstract

AbstractSARS-CoV-2 has been proposed to encode ORF10 as the 3’ terminal gene in the viral genome. However, the potential role and even existence of a functional ORF10 product has been the subject of debate. There are significant structural features in the viral genomic RNA that could, by themselves, explain the retention of the ORF10 nucleotide sequences without the need for a functional protein product. To explore this question further we made two recombinant viruses, firstly a control virus (WT) based on the genome sequence of the original Wuhan isolate and with the inclusion of the early D614G mutation in the Spike protein. We also made a second virus, identical to WT except for two additional changes that replaced the initiating ORF10 start codon and an internal methionine codon for stop codons (ORF10KO). Here we show that the two viruses have apparently identical growth kinetics in a VeroE6 cell line that over expresses TMPRSS2 (VTN cells). However, in A549 cells over expressing ACE2 and TMPRSS2 (A549-AT cells) the ORF10KO virus appears to have a small growth rate advantage. Growth competition experiments were used whereby the two viruses were mixed, passaged in either VTN or A549-AT cells and the resulting output virus was sequenced. We found that in VTN cells the WT virus quickly dominated whereas in the A549-AT cells the ORF10KO virus dominated. We then used a hamster model of SARS-CoV-2 infection and determined that the ORF10KO virus has attenuated pathogenicity (as measured by weight loss). We found an almost 10-fold reduction in viral titre in the lower respiratory tract for ORF10KO vs WT. In contrast, the WT and ORF10KO viruses had similar titres in the upper respiratory tract. Sequencing of viral RNA in the lungs of hamsters infected with ORF10KO virus revealed that this virus frequently reverts to WT. Our data suggests that the retention of a functional ORF10 sequence is highly desirable for SARS-CoV-2 infection of hamsters and affects the virus’s ability to propagate in the lower respiratory tract.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3