Recording neural reward signals in the real-world using mobile-EEG and augmented reality

Author:

Stringfellow JaleesaORCID,Liran OmerORCID,Lin Mei-HengORCID,Baker Travis E.ORCID

Abstract

AbstractThe electrophysiological response to rewards recorded during laboratory-based tasks has been well documented over the past two decades, yet little is known about the neural response patterns in ‘real-world’ settings. To address this issue, we combined a mobile-EEG system with an augmented reality headset (which blends high definition “holograms” within the real-world) to record event-related brain potentials (ERP) while participants navigated an operant chamber to find rewards. 25 participants (age = 18-43, Male=6, Female=19) were asked to choose between two floating holograms marking a west or east goal-location in a large room, and once participants reached the goal location, the hologram would turn into a reward (5 cents) or no-reward (0 cents) cue. Following the feedback cue, participants were required to return to a hologram marking the start location, and once standing in it, a 3 second counter hologram would initiate the next trial. This sequence was repeated until participants completed 200 trials. Consistent with previous research, reward feedback evoked the reward positivity, an ERP component believed to index the sensitivity of the anterior cingulate cortex to reward prediction error signals. The reward positivity peaked around 235ms post-feedback with a maximal at channel FCz (M=-2.60μV, SD=1.73μV) and was significantly different than zero (p < 0.01). At a behavioral level, participants took approximately 3.38 seconds to reach the goal-location and exhibited a general lose-shift (68.3% ± 3.5) response strategy and were slightly slower to return to the start location following negative feedback (2.43 sec) compared to positive feedback (2.38 sec), evidence of post-error slowing. Overall, these findings provide the first evidence that combining mobile-EEG with augmented reality technology is a feasible solution to enhance the ecological validity of human electrophysiological studies of goal-directed behavior and a step towards a new era of human cognitive neuroscience research that blurs the line between laboratory and reality.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3