Conformational transitions of the HIV-1 Gag polyprotein upon multimerization and gRNA binding

Author:

Banerjee PujaORCID,Voth Gregory A.

Abstract

AbstractDuring the HIV-1 assembly process, the Gag polyprotein multimerizes at the producer cell plasma membrane, resulting in the formation of spherical immature virus particles. Gag-gRNA interactions play a crucial role in the multimerization process, which is yet to be fully understood. We have performed large-scale all-atom molecular dynamics simulations of membrane-bound full-length Gag dimer, hexamer, and 18-mer. The inter-domain dynamic correlation of Gag, quantified by the heterogeneous elastic network model (hENM) applied to the simulated trajectories, is observed to be altered by implicit gRNA binding, as well as the multimerization state of the Gag. The lateral dynamics of our simulated membrane-bound Gag proteins, with and without gRNA binding, agree with prior experimental data and help to validate our simulation models and methods. The gRNA binding is observed to impact mainly the SP1 domain of the 18-mer and the MA-CA linker domain of the hexamer. In the absence of gRNA binding, the independent dynamical motion of the NC domain results in a collapsed state of the dimeric Gag. Unlike stable SP1 helices in the six-helix bundle, without IP6 binding, the SP1 domain undergoes a spontaneous helix-to-coil transition in the dimeric Gag. Together, our findings reveal conformational switches of Gag at different stages of the multimerization process and predict that the gRNA binding reinforces an efficient binding surface of Gag for multimerization, as well as regulates the dynamic organization of the local membrane region itself.SignificanceGag(Pr55Gag) polyprotein orchestrates many essential events in HIV-1 assembly, including packaging of the genomic RNA (gRNA) in the immature virion. Although various experimental techniques, such as cryo-ET, X-ray, and NMR, have revealed structural properties of individual domains in the immature Gag clusters, structural and biophysical characterization of a full-length Gag molecule remains a challenge for existing experimental techniques. Using atomistic molecular dynamics simulations of the different model systems of Gag polyprotein, we present here a detailed structural characterization of Gag molecules in different multimerization states and interrogate the synergy between Gag-Gag, Gag-membrane, and Gag-gRNA interactions during the viral assembly process.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3