Bioinformatics and next generation data analysis reveals the potential role of inflammation in sepsis and its associated complications

Author:

Vastrad BasavarajORCID,Vastrad ChanabasayyaORCID

Abstract

AbstractSepsis is the leading systemic inflammatory response syndrome in worldwide, yet relatively little is known about the genes and signaling pathways involved in sepsis progression. The current investigation aimed to elucidate potential key candidate genes and pathways in sepsis and its associated complications. Next generation sequencing (NGS) dataset (GSE185263) was downloaded from the Gene Expression Omnibus (GEO) database, which included data from 348 sepsis samples and 44 normal control samples. Differentially expressed genes (DEGs) were identified using t-tests in the DESeq2 R package. Next, we made use of the g:Profiler to analyze gene ontology (GO) and REACTOME pathway. Then protein-protein interaction (PPI) of these DEGs was visualized by Cytoscape with Search Tool for the Retrieval of Interacting Genes (STRING). Furthermore, we constructed miRNA-hub gene regulatory network and TF-hub gene regulatory network among hub genes utilizing miRNet and NetworkAnalyst online databases tool and Cytoscape software. Finally, we performed receiver operating characteristic (ROC) curve analysis of hub genes through the pROC package in R statistical software. In total, 958 DEGs were identified, of which 479 were up regulated and 479 were down regulated. GO and REACTOME results showed that DEGs mainly enriched in regulation of cellular process, response to stimulus, extracellular matrix organization and immune system. The hub genes of PRKN, KIT, FGFR2, GATA3, ERBB3, CDK1, PPARG, H2BC5, H4C4 and CDC20 might be associated with sepsis and its associated complications. Predicted miRNAs (e.g., hsa-mir-548ad-5p and hsa-mir-2113) and TFs (e.g., YAP1 and TBX5) were found to be significantly correlated with sepsis and its associated complications. In conclusion, the DEGs, relative pathways, hub genes, miRNA and TFs identified in the current investigation might help in understanding of the molecular mechanisms underlying sepsis and its associated complications progression and provide potential molecular targets and biomarkers for sepsis and its associated complications.

Publisher

Cold Spring Harbor Laboratory

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3