Simulated musculoskeletal optimization for sprinting and marathon running

Author:

Van Wouwe TomORCID,Hicks Jennifer,Delp Scott,Liu Karen

Abstract

ABSTRACTMusculoskeletal geometry and muscle volumes vary widely in the population and are intricately linked to the performance of tasks ranging from walking and running to jumping and sprinting. However, our ability to understand how these parameters affect task performance has been limited due to the high computational cost of modelling the necessary complexity of the musculoskeletal system and solving the requisite multi-dimensional optimization problem. For example, sprinting and running are fundamental to many forms of sport, but past research on the relationships between musculoskeletal geometry, muscle volumes, and running performance has been limited to observational studies, which have not established cause-effect relationships, and simulation studies with simplified representations of musculoskeletal geometry. In this study, we developed a novel musculoskeletal simulator that is differentiable with respect to musculoskeletal geometry and muscle volumes. This simulator enabled us to find the optimal body segment dimensions and optimal distribution of added muscle volume for sprinting and marathon running. Our simulation results replicate experimental observations, such as increased muscle mass in sprinters, as well a mass in the lower end of the healthy BMI range and a higher leg-length-to-height ratio in marathon runners. The simulations also reveal new relationships, for example showing that hip musculature is vital to both sprinting and marathon running. We found hip flexor and extensor moment arms were maximized to optimize sprint and marathon running performance, and hip muscles the main target when we simulated strength training for sprinters. Our simulation results can help sprint and marathon runners customize strength training, and our simulator can be extended to other athletic tasks, such as jumping, or to non-athletic applications, such as designing interventions to improve mobility in older adults or individuals with movement disorders.AUTHOR SUMMARYOur study addresses the challenge of determining optimal musculoskeletal parameters for tasks like sprinting and marathon running. Existing research has been limited to observational studies and simplified simulations. To overcome these limitations, we developed a differentiable musculoskeletal simulator to optimize running performance. We replicated past findings and uncovered new insights. We confirmed the benefits of increased muscle mass for sprinters and identified key factors for marathon runners, such a mass in the lower end of the healthy BMI range and an increased leg-length-to-height ratio. Hip musculature was found to be critical for both sprinting and marathon running.Our simulation results have practical implications. They can inform customized strength training for sprinters and marathon runners. Additionally, the simulator can be extended to other athletic tasks, benefiting various sporting events. Beyond athletics, our open-source simulator has broader applications. It can determine minimal strength requirements for daily activities, guide strength training in the elderly, and estimate the effects of simulated musculoskeletal surgery.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3