Task success in trained spiking neuronal network models coincides with emergence of cross-stimulus-modulated inhibition

Author:

Zhu Yuqing,Smith Chadbourne M.B.,Tang Mufeng,Scherr Franz,MacLean Jason N.ORCID

Abstract

AbstractThe neocortex is composed of spiking neuronal units interconnected in a sparse, recurrent network. Neuronal networks exhibit spiking activity that transforms sensory inputs into appropriate behavioral outputs. In this study, we train biologically realistic spiking neural network (SNN) models to identify the architectural changes which enable task-appropriate computations. Specifically, we employ a binary state change detection task, where each state is defined by motion entropy. This task mirrors behavioral paradigms that mice perform in the lab. SNNs are composed of excitatory and inhibitory units randomly interconnected with connection likelihoods and strengths matched to observations from mouse neocortex. Following training, we discover that SNNs selectively adjust firing rates depending on state, and that excitatory and inhibitory connectivity between input and recurrent layers change in accordance with this rate modulation. Input channels that exhibit bias to one specific motion entropy input develop stronger connections to recurrent excitatory units during training, while channels that exhibit bias to the other input develop stronger connections to inhibitory units. Furthermore, recurrent inhibitory units which positively modulated firing rates to one input strengthened their connections to recurrent units of the opposite modulation. This specific pattern of cross-modulation inhibition emerged as the optimal solution when imposing Dale’s law throughout training of the SNNs. Removing this constraint led to the absence of the emergence of this architectural solution. This work highlights the critical role of interneurons and the specific architectural patterns of inhibition in shaping dynamics and information processing within neocortical circuits.

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3