A fibroblast-dependent TGFβ1/sFRP2 noncanonical Wnt signaling axis underlies epithelial metaplasia in idiopathic pulmonary fibrosis

Author:

Cohen Max L.,Brumwell Alexis N.,Ho Tsung Che,Montas Genevieve,Golden Jeffrey A.,Jones Kirk D.,Wolters Paul J.,Wei Ying,Chapman Harold A.,Le Saux Claude J.

Abstract

AbstractReciprocal interactions between alveolar fibroblasts and epithelial cells are crucial for lung homeostasis, injury repair, and fibrogenesis, but underlying mechanisms remain unclear. To investigate this, we administered the fibroblast-selective TGFβ1 signaling inhibitor, epigallocatechin gallate (EGCG), to Interstitial Lung Disease (ILD) patients undergoing diagnostic lung biopsy and conducted single-cell RNA sequencing on spare tissue. Unexposed biopsy samples showed higher fibroblast TGFβ1 signaling compared to non-disease donor or end-stage ILD tissues. In vivo, EGCG significantly downregulated TGFβ1 signaling and several pro-inflammatory and stress pathways in biopsy samples. Notably, EGCG reduced fibroblast secreted Frizzle-like Receptor Protein 2 (sFRP2), an unrecognized TGFβ1 fibroblast target gene induced near type II alveolar epithelial cells (AEC2s). In human AEC2-fibroblast coculture organoids, sFRP2 was essential for AEC2 trans-differentiation to basal cells. Precision cut lung slices (PCLS) from normal donors demonstrated that TGFβ1 promoted KRT17 expression and AEC2 morphological change, while sFRP2 was necessary for KRT5 expression in AEC2-derived basaloid cells. Wnt-receptor Frizzled 5 (Fzd5) expression and downstream calcineurin-related signaling in AEC2s were required for sFRP2-induced KRT5 expression. These findings highlight stage-specific TGFβ1 signaling in ILD, the therapeutic potential of EGCG in reducing IPF-related transcriptional changes, and identify the TGFβ1-non-canonical Wnt pathway crosstalk via sFRP2 as a novel mechanism for dysfunctional epithelial signaling in Idiopathic Pulmonary Fibrosis/ILD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3