Assessing The Value of Deep Neural Networks for Postoperartive Complication Prediction in Pancreaticoduodenectomy Patients

Author:

Bonde Mikkel,Bonde Alexander,Kaafarani Haytham,Millarch Andreas,Sillesen MartinORCID

Abstract

ABSTRACTIntroductionPancreaticoduodenectomy (PD) for patients with pancreatic ductal adenocarcinoma (PDAC) is associated with a high risk of postoperative complications (PoCs) and risk prediction of these is therefore critical for optimal treatment planning. We hypothesize that novel deep learning network approaches through transfer learning may be superior to legacy approaches for PoC risk prediction in the PDAC surgical setting.MethodsData from the US National Surgical Quality Improvement Program (NSQIP) 2002-2018 was used, with a total of 5,881,881 million patients, including 31,728 PD patients. Modelling approaches comprised of a model trained on a general surgery patient cohort and then tested on a PD specific cohort (general model), a transfer learning model trained on the general surgery patients with subsequent transfer and retraining on a PD-specific patient cohort (transfer learning model), a model trained and tested exclusively on the PD-specific patient cohort (direct model), and a benchmark random forest model trained on the PD patient cohort (RF model). The models were subsequently compared against the American College of Surgeons (ACS) surgical risk calculator (SRC) in terms of predicting mortality and morbidity risk.ResultsBoth the general model and transfer learning model outperformed the RF model in 14 and 16 out of 19 prediction tasks, respectively. Additionally, both models outperformed the direct model on 17 out of the 19 tasks. The transfer learning model also outperformed the general model on 11 out of the 19 prediction tasks. The transfer learning model outperformed the ACS-SRC regarding mortality and all the models outperformed the ACS-SRC regarding the morbidity prediction with the general model achieving the highest Receiver Operator Area Under the Curve (ROC AUC) of 0.668 compared to the 0.524 of the ACS SRC.ConclusionDNNs deployed using a transfer learning approach may be of value for PoC risk prediction in the PD setting.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3