Enhancement of brain atlases with region-specific coordinate systems: flatmaps and barrel column annotations

Author:

Bolaños-Puchet SirioORCID,Teska AleksandraORCID,Reimann Michael W.ORCID

Abstract

AbstractDigital brain atlases define a hierarchy of brain regions and their locations in three-dimensional space. They provide a standard coordinate system in which diverse datasets can be integrated for visualization and analysis. They also enable building of data-driven computational models of brain regions. For atlases of the cerebral cortex, additional information is required to work effectively with its particular, layered architecture and curved geometry. Although some approaches have been employed in the literature, no usable method to produce such information is openly available. To fill this gap, we describe here methods to enhance a cortical atlas with three auxiliary, voxel-wise datasets: first, a field of cortical depth; second, a field of local orientations towards the cortical surface; and third, aflatmapof the cortical volume: a two-dimensional map where each pixel represents a subvolume of voxels along the depth axis, akin to a cortical column. We apply these methods to the somatosensory regions of a digitized version of Paxinos and Watson’s rat brain atlas, and define metrics to assess the quality of our results. Among the many applications of the resulting flatmap, we show their usefulness for: decomposing the cortical volume into uniform columnar subvolumes and defining a topographic mapping for long-range connections between subregions. We also generate a flatmap of the isocortex regions of the Allen Mouse Common Coordinate Framework. Combining this with established two-photon tomography data, we then annotate individual barrels and barrel columns in the mouse barrel cortex. Finally, we use the flatmap to visualize volumetric data and long-range axons. We provide an open source implementation of our methods for the benefit of the community.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3