Replicating RNA as a component of scrapie fibrils

Author:

Bridges Leslie R.

Abstract

Recently, electron cryo-microscopy (cryo-EM) maps of fibrils from the brains of mice and hamsters with five infectious scrapie strains have been published1–5and deposited in the electron microscopy data bank (EMDB)6. This represents long-awaited near-atomic level structural evidence, widely expected to confirm the protein-only prion hypothesis7,8. Instead, the maps reveal a second component, other than protein. The aim of the present study was to identify the nature of this second component, in the published maps1–5, using anin silicoapproach. Extra densities (EDs) containing this component were continuous, straight, axial, at right angles to protein rungs and within hydrogen-bonding distance of protein, consistent with a role as guide and support in fibril construction. EDs co-located with strips of basic residues, notably lysines, and formed a conspicuous cladding over parts of the N-terminal lobe of the protein. In one ED, there was evidence of a Y-shaped polymer forming two antiparallel chains, consistent with replicating RNA. Although the protein-only prion hypothesis7is still popular, convincing counter-evidence for an essential role of RNA as a cofactor has amassed in the last 20 years8. The present findings go beyond this in providing evidence for RNA as the genetic element of scrapie. To reflect the monotonous nature of the protein interface, it is suggested that the RNA may be a tandem repeat. This is against the protein-only prion hypothesis and in favour of a more orthodox agent, more akin to a virus. Fibrils from brains of patients with Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and other neurodegenerations also contain EDs9and may be of a similar aetiology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3