Targeted analysis of dyslexia-associated regions on chromosomes 6, 12 and 15 in large multigenerational cohorts

Author:

Chapman Nicola H.,Navas Patrick,Dorschner Michael O.,Mehaffey Michele,Wigg Karen G.,Price Kaitlyn M.,Naumova Oxana Y.,Kerr Elizabeth N.,Guger Sharon L.,Lovett Maureen W.,Grigorenko Elena L.,Berninger Virginia,Barr Cathy L.,Wijsman Ellen M.,Raskind Wendy H.ORCID

Abstract

ABSTRACTDyslexia is a common specific learning disability with a strong genetic basis that affects word reading and spelling. An increasing list of loci and genes have been implicated, but analyses to-date investigated only limited genomic variation within each locus with no confirmed pathogenic variants. In a collection of >2000 participants in families enrolled at three independent sites, we performed targeted capture and comprehensive sequencing of all exons and some regulatory elements of five candidate dyslexia risk genes (DNAAF4,CYP19A1,DCDC2,KIAA0319andGRIN2B) for which prior evidence of association exists from more than one sample. For each of six dyslexia-related phenotypes we used both individual-single nucleotide polymorphism (SNP) and aggregate testing of multiple SNPs to evaluate evidence for association. We detected no promoter alterations and few potentially deleterious variants in the coding exons, none of which showed evidence of association with any phenotype. All genes exceptDNAAF4provided evidence of association, corrected for the number of genes, for multiple non-coding variants with one or more phenotypes. Results for a variant in the downstream region ofCYP19A1and a haplotype inDCDC2yielded particularly strong statistical significance for association. This haplotype and another inDCDC2affected performance of real word reading in opposite directions. InKIAA0319, two missense variants annotated as tolerated/benign associated with poor performance on spelling. Ten non-coding SNPs likely affect transcription factor binding. Findings were similar regardless of whether phenotypes were adjusted for verbal IQ. Our findings from this large-scale sequencing study complement those from genome-wide association studies (GWAS), argue strongly against the causative involvement of large-effect coding variants in these five candidate genes, support an oligogenic etiology, and suggest a role of transcriptional regulation.Author SummaryFamily studies show that genes play a role in dyslexia and a small number of genomic regions have been implicated to date. However, it has proven difficult to identify the specific genetic variants in those regions that affect reading ability by using indirect measures of association with evenly spaced polymorphisms chosen without regard to likely function. Here, we use recent advances in DNA sequencing to examine more comprehensively the role of genetic variants in five previously nominated candidate dyslexia risk genes on several dyslexia-related traits. Our analysis of more than 2000 participants in families with dyslexia provides strong evidence for a contribution to dyslexia risk for the non-protein coding genetic variant rs9930506 in theCYP19A1gene on chromosome 15 and excludes theDNAAF4gene on the same chromosome. We identified other putative causal variants in genesDCDC2andKIAA0319on chromosome 6 andGRIN2Bon chromosome 12. Further studies of these DNA variants, all of which were non-coding, may point to new biological pathways that affect susceptibility to dyslexia. These findings are important because they implicate regulatory variation in this complex trait that affects ability of individuals to effectively participate in our increasingly informatic world.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3