A modular platform for on-demand vaccine self-assembly enabled by decoration of bacterial outer membrane vesicles with biotinylated antigens

Author:

Weyant Kevin B.,Liao Julie,Jesus Mariela Rivera-De,Jaroentomeechai Thapakorn,Moeller Tyler D.,Hoang-Phou Steven,Pal Sukumar,Gilmore Sean F.,Singh Riya,Putnam David,Locher Christopher,de la Maza Luis M.,Coleman Matthew A.,DeLisa Matthew P.ORCID

Abstract

AbstractEngineered outer membrane vesicles (OMVs) derived from laboratory strains of bacteria are a promising technology for the creation of non-infectious, nanoparticle vaccines against diverse pathogens. As mimics of the bacterial cell surface, OMVs offer a molecularly-defined architecture for programming repetitive, high-density display of heterologous antigens in conformations that elicit strong B and T cell immune responses. However, antigen display on the surface of OMVs can be difficult to control and highly variable due to bottlenecks in protein expression and localization to the outer membrane of the host cell, especially for bulky and/or complex antigens. To address this shortcoming, we created a universal approach called AddVax (avidin-based dock- and-display for vaccine antigen cross (x)-linking) whereby virtually any antigen that is amenable to biotinylation can be linked to the exterior of OMVs whose surfaces are remodeled with multiple copies of a synthetic antigen receptor (SNARE) comprised of an outer membrane scaffold protein fused to a member of the avidin family. We show that SNARE-OMVs can be readily decorated with a molecularly diverse array of biotinylated subunit antigens, including globular and membrane proteins, glycans and glycoconjugates, haptens, lipids, and short peptides. When the resulting OMV formulations were injected in wild-type BALB/c mice, strong antigen-specific antibody responses were observed that depended on the physical coupling between the antigen and SNARE-OMV delivery vehicle. Overall, these results demonstrate AddVax as a modular platform for rapid self-assembly of antigen-studded OMVs with the potential to accelerate vaccine generation, respond rapidly to pathogen threats in humans and animals, and simplify vaccine stockpiling.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biological Nanoparticles in Vaccine Development;Frontiers in Bioengineering and Biotechnology;2022-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3