Kv4.3 channel downregulation mediates chronic post-lesional pacemaker acceleration in surviving dopamine substantia nigra neurons

Author:

Kovacheva LoraORCID,Shin JosefORCID,Farassat Navid,Roeper JochenORCID

Abstract

AbstractSubstantia nigra dopamine (SN DA) neurons are progressively lost in Parkinson disease (PD). While the molecular and cellular mechanisms of their differential vulnerability and degeneration have been extensively studied, we still know very little about potential functional adaptations of those SN DA neurons that – at least for some time – manage to survive during earlier stages of PD. We utilized a partial lesion 6-OHDA mouse model to characterize initial electrophysiological impairments and chronic adaptations of surviving identified SN DA neurons, both in vivo and in vitro. Early after lesion (3 weeks), we detected a selective loss of in vivo burst firing in surviving SN DA neurons, which was accompanied by in vitro pacemaker instability. In contrast, late after lesion (>2 months), in vivo firing properties of surviving SN DA neurons had recovered in the presence of 2-fold accelerated pacemaking in vitro. Finally, we show that this chronic cell-autonomous adaptation in surviving SN DA neurons was mediated by Kv4.3 channel downregulation. Our study demonstrates substantial homeostatic plasticity of surviving SN DA neurons after a single-hit non-progressive lesion, which might contribute to the phenotype of initially surviving SN DA neurons in PD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3