Anterior thalamic nuclei: A critical substrate for non-spatial paired-associate memory

Author:

Hamilton Jennifer JORCID,Dalrymple-Alford John C

Abstract

AbstractThe anterior thalamic nuclei (ATN), a central node in a complex memory system, process spatial and temporal memory. Here, we show that ATN lesions do not affect acquisition of a simple odour discrimination or a simple object discrimination in a runway apparatus. The same procedures were used to test learning of an arbitrary association between non-spatial object-odour pairings (A+X or B+Y were rewarded; but not A+Y or B+X). If ATN lesions recapitulate hippocampal function, specifically CA1 function, then they should disrupt acquisition only when an explicit delay (i.e., a 10-second trace) is inserted between the odour and object. Acquisition was completely abolished by ATN lesions, irrespective of the presence of the temporal trace, and despite extensive training (50x12-trial sessions). Faster acquisition with the 10-second trace was found in the sham-lesion rats. During recall, 5 days after criterion, sham rats but not ATN-lesion rats showed elevated Zif268 expression in hippocampal CA1 for the trace compared to no-trace condition; both sham and lesion rats tested in the trace condition showed increased IEG expression in the superficial layers of the prefrontal cortex and retrosplenial cortex. ATN lesions markedly reduced Zif268 expression in the prefrontal cortex and retrosplenial cortex. This is the first evidence that ATN lesions impair non-spatial paired-associate tasks. The findings suggest that the ATN influence memory beyond time and space, and constitute a critical neural structure for learning arbitrary associations even in the task version that is not disrupted by hippocampal lesions.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. Lesions in the anterior thalamic nuclei of rats do not disrupt acquisition of stimulus sequence learning;The Quarterly Journal of Experimental Psychology,2011

2. Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits?;Neuroscience & Biobehavioral Reviews,2015

3. Lesions of the fornix and anterior thalamic nuclei dissociate different aspects of hippocampal-dependent spatial learning: Implications for the neural basis of scene learning.

4. Bell, R. (2007). Anterior and lateral thalamic lesions in object-odour paired associate learning (unpublished master’s thesis). University of Canterbury, Christchurch, New Zealand.

5. Hippocampal–diencephalic–cingulate networks for memory and emotion: An anatomical guide;Brain and Neuroscience Advances,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3