Adipocyte-Specific Ablation Of PU.1 Promotes Energy Expenditure and Ameliorates Metabolic Syndrome In Aging Mice

Author:

Chen Keyun,De Angulo Alejandra,Guo Xin,More Aditya,Ochsner Scott A.,Lopez Eduardo,Saul David,Pang Weijun,Sun Yuxiang,McKenna Neil J.ORCID,Tong Qiang

Abstract

ABSTRACTObjectiveAlthough PU.1/Spi1 is known as a master regulator for macrophage development and function, we have reported previously that it is also expressed in adipocytes and is transcriptionally induced in obesity. Here, we investigated the role of adipocyte PU.1 in the development of age-associated metabolic syndrome.MethodsWe generated mice with adipocyte specific PU.1 knockout, assessed metabolic changes in young and aged PU.1fl/fl (control) and AdipoqCre PU.1fl/fl(aPU.1KO) mice, including body weight, body composition, energy expenditure and glucose homeostasis. We also performed transcriptional analyses using RNA-Sequencing of adipocytes from these mice.ResultsaPU.1KO mice have elevated energy expenditure at a young age and decreased adiposity and increased insulin sensitivity in later life. Corroborating these observations, transcriptional network analysis indicated the existence of validated, aPU.1-modulated regulatory hubs that direct inflammatory and thermogenic gene expression programs.ConclusionsOur data provide evidence for a previously uncharacterized role of PU.1 in the development of age-associated obesity and insulin resistance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3