But Mouse, you are not alone: On some severe acute respiratory syndrome coronavirus 2 variants infecting mice

Author:

Kuiper Michael J.,Wilson Laurence OW,Mangalaganesh Shruthi,Lee Carol,Reti Daniel,Vasan Seshadri SORCID

Abstract

AbstractIn silico predictions combined with in vitro, in vivo and in situ observations collectively suggest that mouse adaptation of the SARS-CoV-2 virus requires an aromatic substitution in position 501 or position 498 (but not both) of the spike protein’s receptor binding domain. This effect could be enhanced by mutations in positions 417, 484, and 493 (especially K417N, E484K, Q493K and Q493R), and to a lesser extent by mutations in positions 486 and 499 (such as F486L and P499T). Such enhancements due to more favourable binding interactions with residues on the complementary angiotensin-converting enzyme 2 (ACE2) interface, are however, unlikely to sustain mouse infectivity on their own based on theoretical and experimental evidence to date. Our current understanding thus points to the Alpha, Beta, Gamma, and Omicron variants of concern infecting mice, while Delta and ‘Delta Plus’ lack a similar biomolecular basis to do so. This paper identifies eleven countries (Brazil, Chile, Djibouti, Haiti, Malawi, Mozambique, Reunion, Suriname, Trinidad and Tobago, Uruguay and Venezuela) where targeted local field surveillance of mice is encouraged because they may have come in contact with humans who had the virus with adaptive mutation(s). It also provides a systematic methodology to analyze the potential for other animal reservoirs and their likely locations.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. An interactive web-based dashboard to track COVID-19 in real time

2. Supporting pandemic response using genomics and bioinformatics: A case study on the emergent SARS-CoV-2 outbreak;Transboundary & Emerging Diseases,2020

3. Lassaunière R , Fonager J , Rasmussen, M , et al. Working paper on SARS-CoV-2 spike mutations arising in Danish mink, their spread to humans and neutralization data. 2020. Available at https://files.ssi.dk/Mink-cluster-5-short-report_AFO2 (accessed 1 December 2020).

4. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus

5. Structural impact on SARS-CoV-2 spike protein by D614G substitution

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3