One Health or Three? Transmission modelling of Klebsiella isolates reveals ecological barriers to transmission between humans, animals and the environment

Author:

Thorpe HarryORCID,Booton Ross,Kallonen Teemu,Gibbon Marjorie J.,Couto Natacha,Passet Virginie,Fernandez Juan Sebastian Lopez,Rodrigues Carla,Matthews Louise,Mitchell Sonia,Reeve Richard,David Sophia,Merla Cristina,Corbella Marta,Ferrari Carolina,Comandatore Francesco,Marone Piero,Brisse SylvainORCID,Sassera Davide,Corander Jukka,Feil Edward J.

Abstract

AbstractThe Klebsiella group is highly diverse both genetically and ecologically, being commonly recovered from humans, livestock, plants, soil, water, and wild animals. Many species are opportunistic pathogens, and can harbour diverse classes of antimicrobial resistance (AMR) genes. K. pneumoniae is responsible for a high public-health burden, due in part to the rapid spread of health-care associated clones that are non-susceptible to carbapenems. Klebsiella thus represents a highly pertinent taxon for assessing the risk to public health posed by animal and environmental reservoirs. Here we report an analysis of 6548 samples and 3,482 genome sequences representing 15 Klebsiella species sampled over a 15-month period from a wide range of clinical, community, animal and environmental settings in and around the city of Pavia, in the northern Italian region of Lombardy. Despite carbapenem-resistant clones circulating at a high frequency in the hospitals, we find no genotypic or phenotypic evidence for non-susceptibility to carbapenems outside of the clinical environment. The non-random distribution of species and strains across sources point to ecological barriers that are likely to limit AMR transmission. Although we find evidence for occasional transmission between settings, hierarchical modelling and intervention analysis suggests that direct transmission from the multiple non-human (animal and environmental) sources included in our sample accounts for less than 1% of hospital disease, with the vast majority of clinical cases originating from other humans.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3