Determinants for forming a supramolecular myelin-like proteolipid lattice

Author:

Ruskamo Salla,Krokengen Oda C.,Kowal Julia,Nieminen Tuomo,Lehtimäki Mari,Raasakka ArneORCID,Dandey Venkata P.,Vattulainen Ilpo,Stahlberg Henning,Kursula PetriORCID

Abstract

AbstractMyelin protein P2 is a peripheral membrane protein of the fatty acid binding protein family. It functions in the formation and maintenance of the peripheral nerve myelin sheath, and several P2 mutations causing human Charot-Marie-Tooth neuropathy have been reported. Here, electron cryomicroscopy of myelin-like proteolipid multilayers revealed a three-dimensionally ordered lattice of P2 molecules between stacked lipid bilayers, visualizing its possible assembly at the myelin major dense line. A single layer of P2 is inserted between two bilayers in a tight intermembrane space of ∼3 nm, implying direct interactions between P2 and two membrane surfaces. Further details on lateral protein organization were revealed through X-ray diffraction from bicelles stacked by P2. Surface mutagenesis of P2 coupled to structural and functional experiments revealed a role for both the portal region and the opposite face of P2 in membrane interactions. Atomistic molecular dynamics simulations of P2 on myelin-like and model membrane surfaces suggested that Arg88 is an important residue for P2-membrane interactions, in addition to the helical lid domain on the opposite face of the molecule. Negatively charged myelin lipid headgroups anchor P2 stably on the bilayer surface. Membrane binding may be accompanied by opening of the P2 β barrel structure and ligand exchange with the apposing lipid bilayer. Our results provide an unprecedented view into an ordered, multilayered biomolecular membrane system induced by the presence of a peripheral membrane protein from human myelin. This is an important step towards deciphering the 3-dimensional assembly of a mature myelin sheath at the molecular level.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3