Safety Recommendations for Temporal Interference Stimulation in the Brain

Author:

Cassarà Antonino M.ORCID,Newton Taylor H.ORCID,Zhuang Katie,Regel Sabine J.,Achermann PeterORCID,Kuster NielsORCID,Neufeld EsraORCID

Abstract

AbstractTemporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, non-invasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and non-clinical applications, little data is yet available regarding its effects in humans. To inform the design and approval of experiments involving TIS, researchers require quantitative guidance regarding exposure limits and other safety concerns. To this end, we sought to delineate a safe range of exposure parameters (voltages and currents applied via external scalp electrodes) for TIS in humans through comparisons with well-established but related brain stimulation modalities. Specifically, we surveyed the literature for adverse events (AEs) associated with transcranial alternating/direct current stimulation (tACS/tDCS), deep brain stimulation (DBS), and TIS to establish known boundaries for safe operating conditions. Drawing on the biophysical mechanisms associated with the identified AEs, we determined appropriate exposure metrics for each stimulation modality. Using these metrics, we conducted anin silicocomparison of various exposure scenarios for tACS, DBS, and TIS using multiphysics simulations in an anatomically detailed head model with realistic current strengths. By matching stimulation scenarios in terms of biophysical impact, we inferred the frequency-dependent TIS stimulation parameters that resulted in exposure magnitudes known to be safe for tACS and DBS. Based on the results of our simulations and existing knowledge regarding tES and DBS safety, we propose frequency-dependent thresholds below which TIS voltages and currents are unlikely to pose a risk to humans. Safety-related data from ongoing and future human studies are required to verify and refine the thresholds proposed here.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3