Adaptation of a transmitted/founder simian-human immunodeficiency virus for enhanced replication in rhesus macaques

Author:

Bauer Anya,Lindemuth Emily,Joy Jaimy,Marino Francesco Elia,Docken Steffen S.,Krause Ryan,Mallick Suvadip,McCormick Kevin,Holt Clinton,Georgiev Ivelin,Felber Barbara,Keele Brandon F.,Veazey Ronald,Davenport Miles P.,Li Hui,Shaw George M.,Bar Katharine J.

Abstract

AbstractTransmitted/founder (TF) simian-human immunodeficiency viruses (SHIVs) express HIV-1 envelopes modified at position 375 to efficiently infect rhesus macaques while preserving authentic HIV-1 Env biology. TF SHIV.C.CH505 is an extensively characterized virus shown to recapitulate key features of HIV-1 immunobiology, including CCR5-tropism, a tier 2 neutralization profile, reproducible early viral kinetics, and authentic immune responses. SHIV.C.CH505 is used frequently in nonhuman primate studies of HIV, but viral loads after months of infection are variable and typically lower than those in people living with HIV. We hypothesized that additional mutations besides Δ375 might further enhance virus fitness without compromising essential components of CH505 Env biology. From sequence analysis of SHIV.C.CH505-infected macaques across multiple experiments, we identified a signature of envelope mutations associated with higher viremia. We then used short-termin vivomutational selection and competition to identify a minimally adapted SHIV.C.CH505 with just five amino acid changes that substantially improve virus replication fitness in macaques. Next, we validated the performance of the adapted SHIVin vitroandin vivoand identified the mechanistic contributions of selected mutations.In vitro, the adapted SHIV shows improved virus entry, enhanced replication on primary rhesus cells, and preserved neutralization profiles.In vivo, the minimally adapted virus rapidly outcompetes the parental SHIV with an estimated growth advantage of 0.14 days-1and persists through suppressive antiretroviral therapy to rebound at treatment interruption. Here, we report the successful generation of a well-characterized, minimally adapted virus, termed SHIV.C.CH505.v2, with enhanced replication fitness and preserved native Env properties that can serve as a new reagent for NHP studies of HIV-1 transmission, pathogenesis, and cure.Author SummaryThe power of the nonhuman primate model of HIV to predict outcomes in people living with HIV (PLWH) depends on authentic virus-host interactions. In pursuit of viruses that generate infection that mirrors the effects of HIV-1 in PLWH, we developed a minimally adapted version of a commonly used virus, SHIV.C.CH505, which has better fitness than the parental virus while retaining important biological properties. First, we studied virus sequences from SHIV.C.CH505-infected rhesus macaques to identify a signature of mutations common to animals with higher viral loads. We then tested viruses containing the various mutations in the lab and in animals to determine the most fit version and to identify the contribution of each mutation. Ultimately, we identified a minimally adapted version of SHIV.C.CH505 with just 5 amino acid substitutions that enhances virus replication and preserves CH505 envelope properties, including sensitivity to clinically relevant broadly neutralizing antibodies. This new virus, called SHIV.C.CH505.v2 replicates well in macaques over time and persists through antiretroviral therapy. SHIV.C.CH505.v2 could be an important component of nonhuman primate studies of HIV prevention, therapy, and cure.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3