The canonical E2Fs together with RETINOBLASTOMA-RELATED are required to establish quiescence during plant development

Author:

Gombos Magdolna,Raynaud Cécile,Nomoto Yuji,Molnár Eszter,Brik-Chaouche Rim,Takatsuka Hirotomo,Zaki Ahmad,Bernula Dóri,Latrasse David,Mineta Keito,Nagy Fruzsina,He Xiaoning,Iwakawa Hidekazu,Őszi Erika,An Jing,Suzuki Takamasa,Papdi Csaba,Bergis Clara,Benhamed MoussaORCID,Bögre LászlóORCID,Ito MasakiORCID,Magyar Zoltán

Abstract

AbstractMaintaining stable and transient quiescence in differentiated and stem cells, respectively, requires repression of the cell cycle. The plant RETINOBLASTOMA-RELATED (RBR) has been implicated in stem cell maintenance, presumably by forming repressor complexes with E2F transcription factors. Surprisingly we find that mutations in all three canonical E2Fs do not compromise the cell cycle, but similarly toRBRsilencing, result in overproliferation. Contrary to the growth arrest upon RBR silencing, when exit from proliferation to differentiation is inhibited, thee2fabcmutant develops enlarged organs with supernumerary stem and differentiated cells as the quiescence is compromised. While E2F, RBR and the M-phase regulatory MYB3Rs are part of the DREAM repressor complexes, and recruited to overlapping groups of targets, they regulate distinct sets of genes. Only the loss of E2Fs but not the MYB3Rs interferes with quiescence, which might be due to the ability of E2Fs to control both G1-S and some key G2-M targets. We conclude that collectively the three canonical E2Fs in complex with RBR have central roles in establishing cellular quiescence during organ development, leading to enhanced plant growth.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3