Modeling the carbon-dioxide response function in fMRI under task and resting-state conditions

Author:

Shams Seyedmohammad,Prokopiou Prokopis,Esmaelbeigi Azin,Mitsis Georgios D.,Chen J. Jean

Abstract

AbstractConventionally, cerebrovascular reactivity (CVR) is estimated as the amplitude of the hemodynamic response to vascular stimuli. While the CVR amplitude has established clinical utility, the temporal characteristics of CVR have been increasingly explored and may yield even more pathology-sensitive parameters. This work is motivated by the current need to evaluate the feasibility of dCVR modeling in various noise conditions. In this work, we present a comparison of several recently published model-based deconvolution approaches for estimating h(t), including maximum a posterior likelihood (MAP), inverse logit (IL), canonical correlation analysis (CCA), and basis expansion (using Gamma and Laguerre basis sets). To aid the comparison, we devised a novel simulation framework that allowed us to target a wide range of SNRs, ranging from 10 to −7 dB, representative of both task and resting-state CO2 changes. In addition, we built ground-truth h(t) into our simulation framework, overcoming the practical limitation that the true h(t) is unknown in methodological evaluations. Moreover, to best represent realistic noise found in fMRI scans, we extracted it from in-vivo resting-state scans. Furthermore, we introduce a simple optimization of the CCA method (CCAopt) and compare its performance to these existing methods. Our findings suggest that model-based methods can reasonably estimate dCVR even amidst high noise, and in a manner that is largely independent of the underlying model assumptions for each method. We also provide a quantitative basis for making methodological choices, based on the desired dCVR parameters, the estimation accuracy and computation time. The BEL method provided the highest accuracy and robustness, followed by the CCAopt and IL methods. Of the three, the CCAopt method required the lowest computational time. These findings lay the foundation for wider adoption of dCVR estimation in CVR mapping.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3