Physical confinement promotes mesenchymal trans-differentiation of invading transformed cells in vivo

Author:

Zulueta-Coarasa TeresaORCID,Fadul JohnORCID,Ahmed Marjana,Rosenblatt JodyORCID

Abstract

Metastasis is tightly linked with poor cancer prognosis, yet it is not clear how transformed cells become invasive carcinomas. We previously discovered that single KRasV12-transformed cells can invade directly from the epithelium by basal cell extrusion. During this process, cells de-differentiate by mechanically pinching off their epithelial determinants, but how they trans-differentiate into a migratory, mesenchymal phenotype is not known. Here, we demonstrate that basally extruded KRasV12-expressing cells become significantly deformed as they invade the zebrafish body. Decreasing the confinement that cells experience after they invade reduces the percentage of KRasV12 cells that trans-differentiate into mesenchymal cell types, while higher confinement increases this percentage. Additionally, increased confinement promotes accumulation of internal masses over time. Altogether, our results suggest that mechanical forces drive not only de-differentiation of KRasV12-transformed epithelial cells as they invade but also contribute to their re-differentiation into mesenchymal phenotypes that contribute to distant metastases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3