SVR-based Multimodal Active Subspace Analysis for the Brain using Neuroimaging Data

Author:

Batta IshaanORCID,Abrol Anees,Calhoun Vince D.ORCID,

Abstract

ABSTRACTUnderstanding the patterns of changes in brain function and structure due to various disorders and diseases is of utmost importance. There have been numerous efforts toward successful biomarker discovery for complex brain disorders by evaluating neuroimaging datasets with novel analytical frameworks. However, due to the multi-faceted nature of the disorders involving a wide and overlapping range of symptoms as well as complex changes in structural and functional brain networks, it is increasingly important to devise computational frameworks that can consider the underlying patterns of heterogeneous changes with specific target assessments, at the same time producing a summarizing output from the high-dimensional neuroimaging data. While various machine learning approaches focus on diagnostic prediction, many learning frameworks analyze important features at the level of brain regions involved in prediction using supervised methods. Unsupervised learning methods have also been utilized to break down the neuroimaging features into lower dimensional components. However, most learning frameworks either do not consider the target assessment information while extracting brain subspaces, or can extract only higher dimensional importance associations as an ordered list of involved features, making manual interpretation at the level of subspaces difficult. We present a novel multimodal active subspace learning framework to understand various subspaces within the brain that are associated with changes in particular biological and cognitive traits. For a given cognitive or biological trait, our framework performs a decomposition of the feature importances to extract robust multimodal subspaces that define the most significant change in the given trait. Through a rigorous cross-validation procedure on an Alzheimer’s disease (AD) dataset, we show that our framework can extract subspaces covering both functional and structural modalities, which are specific to a given clinical assessment (like memory and other cognitive skills) and also retain predictive performance in standard machine learning algorithms. We show that our framework not only uncovers AD-related brain regions (e.g., hippocampus, entorhinal cortex) in the associated brain subspaces, but also enables an automated identification of multiple underlying structural and functional sub-systems of the brain that collectively characterize changes in memory and cognitive skill proficiency related to brain disorders like AD.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. Deep multimodal subspace clustering networks;IEEE Journal of Selected Topics in Signal Processing,2018

2. Deep residual learning for neuroimaging: an application to predict progression to alzheimer’s disease;Journal of neuroscience methods,2020

3. Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning;Nature communications,2021

4. Ica and iva for data fusion: An overview and a new approach based on disjoint subspaces;IEEE sensors letters,2018

5. Inflammation and Alzheimer's disease

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3